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of the improved 3-dB hybrid-ring directional coupler would be
better when carefully and elaborately manufactured.

V. CONCLUSION

A broad-band design theory of the improved 3-dB hybrid-ring
directional couplers by CAD was demonstrated, where the con-
cept of a hypothetical port was adopted. Also, the characteristics
of the improved 3-dB hybrid ring are compared with those of the
conventional rat race and hybrid ring. It was clearly shown that
the bandwidth is broadened considerably by dividing the three-
quarter-wave equal-admittance section of the conventional hy-
brid-ring into unequal-admittance sections with proper values,
while the symmetry of the circuit is maintained. Hence, the
improved hybrid-ring directional coupler can be constructed very
easily and its bandwidth reaches up to approximately 50.7 per-
cent. The experiments for two cases as examples were carried out,
the results of which agreed well with the numerically designed
ones, and, hence, the validity of the broad-band design method
was confirmed.
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New View on an Anisotropic Medium in a Moving
Line Charge Problem
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Abstract —The electromagnetic field solution of the problem, in which
the line charges move uniformly parallel or perpendicular to the interface
of two different anisotropic media, is obtained by the method of moving

Manuscript received March 9, 1982; revised May 4, 1982,
The author 1s with the Department of Electrical Engineering, Ibaraki Univer-
sity, 4-12-1 Nakanausawa-Machi, Hitachi, Ibaraki, Japan

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES VOL. 30, NO. 11, NOVEMBER 1982

images. The results are shown by representing the moving image line
charges for such a problem. A new view on an anisotropic medium in such a
problem is discussed by defining the equivalent metric factor and the
equivalent normalized metric factor. The minimum principle shown in this
short paper states that the electric flux emitted from the moving line charge
chooses a trajectory that minimizes the equivalent effective length.

I. INTRODUCTION

The radiation produced by a uniformly moving point charge
has been experimentally discovered by Cerenkov [6] and theoreti-
cally investigated by Frank and Tamm [7]. Ginzburg and Frank
[8] have shown that a point charge moving uniformly across the
interface of two media with different dielectric constants emits a
unique radiation, called transition radiation. These radiations
have later markedly been investigated by many workers [1]-[5],
[9]-[17] (good bibliographies are given in [I5] and [20]). The
Cerenkov counter (for example, see [4]) and the microwave
generator (for example, see [1], [5]) have been considered as the
application. On the other hand, the problem of radiation from a
source embedded in a moving medium as the inverse problem of
the former has been investigated (for example, see [18]~[20], good
bibliographies are given in [20}).

From the interests for the boundary value problem in the
relativistic electrodynamics, this short paper treats the fields
produced by moving charges. The fields produced by charges
moving uniformly in two isotropic media have been determined,
by the method of moving images, by Beck [9] for the motion
perpendicular to the interface and by Sitenko and Tkalich [13] for
the motion parallel to the interface.

This short paper derives the solution of electromagnetic fields
by the line charges uniformly moving parallel or perpendicular to
the interface of two different anisotropic media. This problem
may be attacked by the method of moving images for a case that
the velocities of all moving line charges are less than the phase
velocities of light in those media. Then, the equivalent metric
factor and the equivalent normalized metric factor of an aniso-
tropic medium are defined by extending the metric factor and the
normalized metric factor in the case of the static problem [21].
The minimum principle of equivalent effective path length for
such electric flux is expressed in the form of integration by using
the equivalent normalized metric factor.

II. FIELDS BY A MOVING LINE CHARGE IN A SINGLE
ANISOTROPIC MEDIUM

Consider the problem that the line charge A, infinitely ex-
tended parallel to the x axis moves uniformly in the positive
z-direction with velocity v in a single medium of the following
permittivity tensor € and permeability p:

e 0 0

E=|0 € 0 j¢, (1)
0 0 e

="y (2)

where ¢}, €%, and ¢* are the relative dielectric constants, p* the
relative permeability, and €, and u, the permittivity and the
permeability of vacuum, respectively.

The electromagnetic field is determined by Maxwell’s equa-
tions for the given line charge density and current

po=Ao8(y)8(z—0r) (3)
j=pvz (4)
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where £ is the unit vector in the positive z-direction. The electric
and magnetic fields E and B are expressed in terms of the scalar
and vector potentials ¢ and 4

E=——grad¢—a—£— (%)

B=curld. (6)
Then, rewriting Maxwell’s equations based on the condition
¢ 1 94,
€03, ar  pruy 9z Q)

we can obtain the following equations for the potentials:

82¢ 62 2
60(63—8‘; -—¢

"¢
+e¥ efpte
322) y p’ OF’O 8[

=—A8(y)8(z— 1)
A, =A,=0,4,=eju*epe .

(®)
(%)

This condition corresponds to the Lorentz condition well known
for the isotropic medium. The author calls this the modified
Lorentz condition. We can take care of the fact that the coeffi-
cient of 3@ /Jt is the permittivity in the y-direction perpendicular
to the moving direction.

The relationship between the space and time of two systems of
coordinates, one, §’, in uniform motion in the positive z-direction
with speed v relative to the other, S, is given by the Lorentz
transformation (let the velocity of light in vacuum denote by ¢).
Also, the four-potential (¢'/c, A, A}y, A7) in the moving frame
S’ and the four-potential (¢/c,A4,,4,,4,) in the rest frame S
are related by the Lorentz transformation: A, = 4}, = A}, =0 in
this problem.

Applying the Lorentz transformation to (8) and using the
property of delta function, 8 (kx) = 8(x)/|k|, we can get

82
6; ¢2 + ey (
ay’

wp?) 22 ——%Ysu')a(z') (10)

3/2

where B=v/c and y=1/y1- 2. Usmg the relation between ¢

in S and ¢’ in §’

¢=1v¢’ (11)
we can rewrite (10) as follows:
¢ L 0% _ Ao
* T _— —_— ’ ’
eyl 3y12+ a 172 €08(y)8(2) (12)

where
(13)

Now, the source line charge A rests on the original point in §’
and reversely, the medium moves uniformly with speed v in the
negative z-direction. Therefore, we can derive ¢’ as the solution
of the potential for the electrostatic problem in which the source
line charge A, is put on the original point in the anisotropic
dielectric medium of the y’-direction and z’-direction relative
dielectric constants, ¢¥ and €, respectively. We already know
this solution in the previous paper [21]. It is

[ S S Y & PP Y 1
EV’_E,V’ez'_ez(l 6yl‘"ﬁ )'Y

¢'= Yo b (14)

* %
277(0\/cy,e:, y? 22
pryupey
€V' €.

where b is an arbitrary constant.
We can represent ¢ by using the Lorentz transformation and
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(11), (13), and (14) as follows:

A
¢ ==
2vreo\/€;"e;"(l - e;p,*ﬁz)
‘In b (15)
(z—0vt)’

y2
" e(1-aus?)

Therefore, E and B can be obtained by substituting these ¢ and
A(A,=A4,=0,4,+0) into (5) and (6), respectively, as follows:

E =0
_ Agern’y
F ok 2402 4 ok, s}
2meqgnyeker {'r) eyl +er(z—ot) } (16)
~ Aoetn®(z - ot)
’ 2meqnyetes {nze;“yz +ei(z— vt)2>
and
- M*P«oxouﬂ%’ €ger
B =
27711{71 €xy? +eX(z—ot) } (17)
B,=0
B,=0
where
=1~ G;N*‘oﬂ'ovz- (18)

We see from (16) that the moving line charge emits electric flux
in the radial direction.

III. EQUIVALENT METRIC AND NORMALIZED METRIC
FACTORS

From the form of (15) representing a scalar potential ¢, let
(z — vt) denote by the new variable {

{=2z—v0t.

(19)
We can consider the equivalent anisotropic medium with the
following relative dielectric constants in the y{-coordinates:

(20)

The problem for ¢ in the y{-coordinates looks the same to the
electrostatic problem in the anisotropic dielectric medium shown
in the previous paper [21]. Therefore, we can define, for the
moving line charge problem, the equivalent metric factor m. in
the radial direction with the angle 8, from the y axis perpendicu-
lar to the moving direction as follows:

meq(ey,c,, y) m(ev,eg, ) (21)
where m is the metric factor and is defined in [21], that is
m(ex, et,0,) = ~l;00520V+L*sin20y. (22)
€y T

Also, we define the equivalent normalized metric factor n. as
the equivalent metric factor normalized by the equivalent metric
factor in the direction with the angle o from the y axis, that is

meq((:’ z? v)

eq(e;‘j,cz,a)

(23)

eq(e},ez, w‘")-
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The « in (23) is defined as the angle between the interface of
different media and the y axis being one of principal axes. On the
other hand, the « for the case of single medium is arbitrary.

We define the equivalent effective path length d( p p, between
the point P,(y,,z,) and the point P,(y,, z,) as follows:

(24)

’ — K ok
dequP;_"' neq(c_vf €2 0y! ‘x)dP,Pz

where

dpp,= \/(y1 =1, + (2, - 22)2 ( = actual path length) (25)

and 8, is the angle between the direction of the line P, P, and the
y axis. Using this equivalent effective path length, we can express
the contribution ¢ to the scalar potential at the point P,(y,, z5)
due to only the moving line charge A, at the point P,(y,z,) as
follows:

¢ = (26)

277601/6;6? déqplpz '
IV. MOoVING IMAGE LINE CHARGES

Consider the problems in which a line charge A, moves at an
uniform velocity v parallel or perpendicular to the interface of
two different media I, II. We can solve these problems by
considcring the moving image line charges, as shown in Fig. 1,
whose positions, magnitudes, and velocities can be obtained by
letting the electromagnetic fields satisfy the continuity conditions
in the interface using (16)—(18).

For a perpendicular motion, we get

% *
Ves, ved,
zg = = 20
3
MVEs: mye€i:
* &
l€2y lsly
by = Uy
* *
Mye2; hye€i:
ok * *
M€~ May€2,22
* oK *
MyeTelz T M2€3,€3,

(27

(28)

K=

(29)

where

(i=1,2). (30)

m =1 chutp?

For a parallel motion, we get

M2 €>21‘;: ’ LR efz
- Jo T — ( (31)
€
2y ly
v, = 0, (32)
et €363,
UM N2
K= . (33)
et R
_].-———
m N2

Therefore, we see that the field solution (the final solution) at
the time ¢ in the medium I can be calculated by summing the
contribution of a moving source charge A,, the source elec-
tromagnetic field, and that of the moving image charge KA. the
reflected electromagnetic field, and the field solution in the
medium II the moving image charge (1— K)A,, the refracted
electromagnetic field.

We can check out that the electric flux emitted from the source
point travels as such that its equivalent effective path length
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Fig. 1 Moving image hine charges for a case of a moving line charges (a)

Perpendicular motion. (b) Parallel motion.

becomes shortest similarly to the electrostatic case [21]. There-
fore, we propose the following minimum principle of equivalent
effective path length for electric flux of a moving line charge
problem with anisotropic media which will be able to be solved
by using the method of moving images:

* o
f neq(ey,fj‘,ﬂy,a)ds—mlmmum.
path

(34)

This principle states that the electric flux emitted from the
moving source line charge chooses a trajectory that minimizes the
equivalent effective path length. We must take note that this
principle is valid for the refracted and reflected flux into which
the final-electric flux associated with a moving single line charge
at an arbitrary point in the region with anisotropic media is
resolved, but not valid for the final-electric flux.

We can show the validity of this minimum principle by show-
ing that we can obtain a trajectory of an electric flux emitted
from the source point by solving the Euler equation for the
principle (34) and then the image points can be obtained as
points with the same equivalent effective path length to that from
the point on the interface to the source point.

V. CONCLUSION

We have solved the moving line charge problem in the aniso-
tropic dielectric medium. Applying those results, the moving line
charge problem with two anisotropic dielectric media have been
solved by the method of moving images. We have defined the
equivalent metric factor and the equivalent normalized metric
factor for an anisotropic medium. Using the equivalent normal-
ized metric factor, we have shown the minimum principle of
equivalent effective path length which shows us a trajectory for
an electric flux to travel.
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Radial Line Transducer

E. SAWADO

I. INTRODUCTION

The purpose of this paper is to give a new excitation method of
a radial-electromagnetic wave by a metallic cylinder with ellipti-
cal cross section. It was ascertained [1] that the radial wave
propagates in a medium of permeability of quantity g, . The
quantity g , is given by p |, = (u*> — x2)/p, where p and « are the
diagonal and nondiagonal components of the tensor permeability
of a gyrotropic medium, respectively. The radial wave has inter-
esting properties that this mode has not cutoff below the critical
frequency w = y(BH)'/?, where w is the angular frequency, y =
1.76 X107 ((0oe 5)™ ' in CGS unit), B = po(H + M,), the magnetic
flux density, H the magnetic field, and M, the saturation magneti-
zation. Ganguly and Webb [2] presented an initial theory and
some experiments for a magnetostatic surface wave single bar
transducer. These investigations have concluded that the lowest
operating frequency of Ganguly-type delay line is y(BH)!/2.
Below this cutoff, no surface modes can exist. In view of the
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Fig. 1. Schematics for radial-line transducer with dimensions and coordi-
nates. (a) Radial line with a fine sire of elliptical cross section (b) Diagram
for a thin wire.

above, investigation of a radial wave type delay line should
produce developments in low frequency microwave (0.5 to 1.5
GHz) applications.

The system analyzed in this report is shown in Fig. 1. A
transducer in the form of a fine wire with an elliptical cross
section is excited with an RF current which generates radial
volume waves within the structure. The dc magnetic field is
directed along the z axis, and also the fine wire with an elliptical
cross section is' situnated parallel to the z axis. This radial wave
propagates perpendicular to the magnetic biasing fields, guided
by parallel surfaces of a ferrite disk, and its energy is distributed
within the medium. As Ganguly et al. pointed out previously, the
frequency characteristics of the radiation resistance is influenced
considerably by changing the microstrip width. The main subject
of this paper is to demonstrate how a change of eccentricity of an
elliptical metal cylinder influences the characteristics of the radia-
tion resistance. The radiation pattern of this elliptic cylinder
(Ribbon type) excitation possesses some type of directivity. If the
eccentricity of the ellipse decreases, the patterns of the radiative
power arc highly directional, and this directed energy power
tends to be confined to the direction of the y-axis shown in Fig.
1(b). It is possible to gain the maximum output power by placing
the second thin wire within an area of maximum radiative power.

II. Basic THEORY

When the fields are independent of z (d/dz=0), for the
component e, of the electric field vector, Maxwell’s equation
leads to the two-dimensional wave equation

3%, 3%

PR +5y—;-+w2€u0,ule:=0

M

where |, = — x%/p, p and « are a diagonal and a nondiagonal
component of permeability tensor i, and p, and € are the vacuum
permeability and dielectric constant, respectively. Applying the
transformation defined by x = hcosh (§)cos(r), y = hsinh
(£)sin(), the wave equation leads to the equation

2 2
9’ + 9. +2k*(cosh(2£)—cos(27))e, =0

382 9 @

where 2k = kh, k? = weuop, h = xo(1—tanh?(£,))'/2, and

(x0+ ¥0)

(£,=0.5n
0 (xo—)’o)

, (refer to Fig. 1 on x, and y, ).

The boundary condition is that, at the surface of a metal cylinder
e: = 0’ g = 50 . (3)

Here, for physically acceptable reasons, we assume that the fields
having periods m, and the lowest mode m = 0 is possible to excite,
so that (6) has a nonzero value. Defining ¢ = (k,h)>/4, the
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