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of the improved 3-dB hybrid-ring directional coupler would be

better when carefully and elaborately manufactured.

V. CONCLUSION

A broad-band design theory of the improved 3-dB hybrid-ring

directional couplers by CAD was demonstrated, where the con-

cept of a hypothetical port was adopted. Also, the characteristics

of the improved 3-dB hybrid ring are compared with those of the

conventional rat race and hybrid ring. It was clearly shown that

the bandwidth is broadened considerably by dividing the three-

quarter-wave equal-admittance section of the conventional hy-

brid-ring into unequal-admittance sections with proper values,

while the symmetry of the circuit is maintained. Hence, the

improved hybrid-ring directional coupler can be constructed very

easily and its bandwidth reaches up to approximately 50.7 per-

cent. The experiments for two cases as examples were carried out,

the results of which agreed well with the numerically designed

ones, and, hence, the validity of the broad-band design method

was confirmed.
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Abstract —The electromagnetic field solution of the problem, in which

the line charges move uniformly parallel or perpendicular to the interface

of two different anisotropic media, is obtained by the method of moving
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images. The results are showo by representing the moving image line

charges for such a problem. A new view on an anisotropic medium in such a

problem is discussed by defining the equivalent metric factor and the

equivalent normalized metric factor. The minimum principle shown in this

short paper states that the electric flux emitted from the moving line charge

chooses a trajectory that minimizes the equivalent effective length.

I. INTRODUCTION

The radiation produced by a uniformly moving point charge

has been experimentally discovered by Cerenkov [6] and theoreti-

cally investigated by Frank and Tamm [7]. Ginzburg and Frank

[8] have shown that a point charge moving uniformly across the

interface of two media with different dielectric constants emits a

unique radiation, called transition radiation. These radiations

have later markedly been investigated by many workers [1]-[5],

[9]-[17] (good bibliographies are given in [15] and [20]). The

Cerenkov counter (for example, see [4]) and the microwave

generator (for example, see [1], [5]) have been considered as the

application. On the other hand, the problem of radiation from a

source embedded in a moving medium as the inverse problem of

the former has been investigated (for example, see [ 18]-[20], good

bibliographies are given in [20]).

From the interests for the boundary value problem in the

relativistic electrodynamics, this short paper treats the fields

produced by moving charges. The fields produced by charges

moving uniformly in two isotropic media have been determined,

by the method of moving images, by Beck [9] for the motion

perpendicular to the interface and by Sitenko and Tkalich [ 13] for

the motion parallel to the interface.

This short paper derives the solution of electromagnetic fields

by the line charges uniformly moving parallel or perpendicular to

the interface of two different anisotropic media. This problem

may be attacked by the method of moving images for a case that

the velocities of all moving line charges are less than the phase

velocities of light in those media. Then, the equivalent metric

factor and the equivalent normalized metric factor of an aniso-

tropic medium are defined by extending the metric factor and the

normalized metric factor in the case of the static problem [21].

The minimum principle of equivalent effective path length for

such electric flux is expressed in the form of integration by using

the equivalent normalized metric factor.

II. FIELDS BY A MOVING LINE CHARGE IN A SINGLE

ANISOTROPIC MEDIUM

Consider the problem that the line charge A ~ infinitely ex-

tended parallel to the x axis moves uniformly in the positive

z-direction with velocity o in a single medium of the following

permittivity tensor ~ and permeability p:

[)

C*.00

i= o c; o e~ (1)

o 0 c:

P = P*KO (2)

where c~, c;, and t; are the relative dielectric constants, p* the

relative permeability, and E. and p. the permittivity and the

permeability of vacuum, respectively.

The electromagnetic field is determined by Maxwell’s equa-

tions for the given line charge density and current

po=A@3(y)8(z–ol) (3)

j=p~~ (4)
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where 2 is the unit vector in the positive z-direction. The electric

and magnetic fields E and B are expressed in terms of the scalar

and vector potentials ~ and A

E=–grad+–, !# (5)

B=curl A. (6)

Then, rewriting Maxwell’s equations based on the condition

we can obtain the following equations for the potentials:

(7)

,.
=–Aoa(y)13(z-t)t) (8)

Ax= AY = O, A= = C;p*Co/.Loo@. (9)

This condition corresponds to the Lorentz condition well known

for the isotropic medium. The author calls this the modified

Lorentz condition. We can take care of the fact that the coeffi-

cient of &D/8t is the permittivity in the y-direction perpendicular

to the moving direction.

The relationship between the space and time of two systems of

coordinates, one, S’, in uniform motion in the positive z-direction

with speed v relative to the other, S, is given by the Lorentz

transformation (let the velocity of light in vacuum denote by c).

Also, the four-potential (@’/c, A~,, A$,, A:,) in the moving frame

S’ and the four-potential (@/c, Ax, AY, A,) in the rest frame S

are related by the Lorentz transformation: A~, = Aj = Aj, = O in

this problem.

Applying the Lorentz transformation to (8) and using the

property of delta function, 6( ,kx) = 8( x)/1 kl, we can get

(1 1), (13), and (14) as follows:

“1nFiK9“5)
Therefore, E and B can be obtained by substituting these ~ and

A(AX=AY=O, A, # O) into (5) and (6), respectively, as follows:

I
EX=O

Ao@y
EY =

{ 2* *+qz-ot)2}27rcolJ~ q Czy
(16)

Aoqf(z-vl)
E,=

{ 2* 2+6; (z–vi)2}2!Tcoq@j ‘q C,y

and

[

– p*poAovTfy@j

Bx =
27q{n26:y2 +c:(z-vt)2) (17)

BY=O

BZ=O

where

q2 = 1– c’ *copor.)2.yP (18)

We see from ( 16) that the moving line charge emits electric flux

in the radial direction.

III. EQUIVALENT METRIC AND NOrtNiALIZED METRIC

c“~+f;yz(l–c;p”~z)~=
‘ C?y’z

- *8( Y’)8(Z’) (lo) FACTORS
az’2

From the form of (15) representing a scalar potential +, let

where /3 = v/c and y = l/~~. Using the relation between @ (z – vt) denote by the new variable {

in S and ~’ in S’ j’=z-vt. (19)

we can rewrite (10) as follow;”= “’

/.. .
(11) We can consider the equivalent anisotropic medium with the

following relative dielectric constants in the y(-coordinates:

C*, a2+’_+,;, w=-
Y i)y’2 82’2

/l.
-#y ’)8(z’) (12)

where

Now, the source line charge A. rests on the original point in S’

and reversely, the medium moves uniformly with speed v in the

negative z-direction. Therefore, we can derive +’ as the solution

of the potential for tlie electrostatic problem in which the source

line charge X. is put on the original point in the anisotropic

dielectric medium of the y ‘-direction and z’-direction relative

dielectric constants, c~ and t~,, respectively. We already know

this solution in the previous paper [21]. It is

(20)

The Droblem for @ in the V{-coordinates looks the same to the

electrostatic problem in the anisotropic dielectric medium shown

in the previous paper [21]. Therefore, we can define, for the

moving line charge problem, the equivalent metric factor m .q in

the radial direction with the angle OYfrom they axis perpendicu-

lar to the moving direction as follows:

where m is the metric factor and is defined in [21], that is

+/= Lo In ~ (14)
27rco~

r

Also, we define the equivalent normalized metric factor n.~ as
/2 212

~+— the equivalent metric factor normalized by the equivalent metric
6;/ c;/ factor in the direction with the angle a from they axis, that is

where b is an arbitrary constant. *e
~=%(%~:??)

%(~;)%$ y!~ — (23)
We can represent @ by using the Lorentz transformation and m eq(f;~;~)
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The a in (23) is defined as the angle between the interface of

different media and the y axis being one of pnncipaf axes. On the

other hand, the a for the case of single medium is arbitrary.

We define the equivalent effective path length d&F,P, between

the point Pl(yl, z,) and the point Pz(yz, ZJ as follows:

dLqP,P2= ~e. (c;, ~;, ey, ~)dp,p,

where

d F,P2= ((Y, - h,)’+ (z, - Z2)2 ( = actual path length)

(24)

(25)

and OFis the angle between the direction of the line P, Pz and the

y axis. Using this equivalent effective path length, we can express

the contribution $ to the scalar potentiaf at the point Pz (-P2, Z2)

due to only the moving line charge A. at the point PI (y,, Z1) as

follows:

IV. MOVING IMAGE LINE CHARGES

Consider the problems in which a line charge A” moves at an

uniform velocity u parallel or perpendicular to the interface of

two different media I, II. We can solve these problems by

considering the moving image line charges, as shown in Fig. 1,

whose positions, magnitudes, and velocities can be obtained by

letting the electromagnetic fields satisfy the continuity conditions

in the interface using ( 16)–( 18).

For a perpendicular motion, we get

6JZ Zf”l=
—z” (27)

7J2& ~lfi

(28)

(29)

where

q?=l–~?y~~~~ (i=l,2). (30)

For a parallel motion, we get

712& ,, film

G

.%= ~ Y“ (31)

02=01 (32)

W@lZ
—

‘=& &“ (33)

Therefore, we see that the field solution (the final solution) at

the time t in the medium I can be calculated by summing the

contribution of a moving source charge A ~, the source elec-

tromagnetic field, and that of the moving image charge KA”, the

reflected electromagnetic field, and the field solution in the

medium II the moving image charge (1 – K) A”, the refracted

electromagnetic field.

We can check out that the electric flux emitted from the source

point travels as such that its equivalent effective path length

‘t /4 ‘t /-

/Fig, 1 Moving image lme charges for a case of a moving line charges (a)
Perpendicular motion. (b) Pnmllel motion.

becomes shortest similarly to the electrostatic case [21]. There-

fore, we propose the following minimum principle of equivalent

effective path length for electric flux of a moving line charge

problem with anisotropic media which will be able to be solved

by using the method of moving images:

~ath ( .)c?, c;, 19V,a ds = minimum.n eq (34)

This principle states that the electric flux emitted from the

moving source line charge chooses a trajectory that minimizes the

equivalent effective path length. We must take note that this

principle is valid for the refracted and reflected flux into which

the final-electric flux associated with a moving single line charge

at an arbitrary point in the region with anisotropic media is

resolved, but not valid for the final-electric flux.

We can show the validity of this minimum principle by show-

ing that we can obtain a trajectog of an electric flux emitted

from the source point by solving the Euler equation for the

principle (34) and then the image points can be obtained as

points with the sane equivalent effective path length to that from

the point on the interface to the source point.

V. CONCLUSION

We have solved the moving line charge problem in the aniso-

tropic dielectric medium. Applying those results, the moving line

charge problem with two anisotropic dielectric media have been

solved by the method of moving images. We have defined the

equivalent metric factor and the equivalent normalized metric

factor for an anisotropic medium. Using the equivalent normal-

ized metric factor, we have shown the minimum principle of

equivalent effective path length which shows us a trajectory for

an electric flux to travel.
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Radial Line Transducer

E. SAWADO

I. INTRODUCTION

The purpose of this paper is to give a new excitation method of

a radial-electromagnetic wave by a metallic cylinder with ellipti-

cal cross section. It was ascertained [1] that the radial wave

propagates in a medium of permeability of quantity p ~. The

quantity p ~ is given by p ~ = (P2 – ~ *)/p, where p and ~ are the

diagonal and nondiagonal components of the tensor permeability

of a gyrotropic medium, respectively. The radial wave has inter-

esting properties that this mode has not cutoff below the critical

frequency o = y( BH) ’12, where r-ois the angular frequency, y =

1.76 x 107 ((oe s)-] in CGS unit), B = WO(H + M.), the magnetic

flux density, H the magnetic field, and M, the saturation magneti-

zation. Ganguly and Webb [2] presented an initial theory and

some experiments for a magnetostatic surface wave single bar

transducer. These investigations have concluded that the lowest

operating frequency of Grtnguly-type delay line is y ( BH)’ /2.

Below this cutoff, no surface modes can exist. In view of the
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(a) (b)

Fig. 1. Schematics for radial-line transducer with dimensions and coordi-
nates. (a) Radud line with a fine sire of elliptical cross section (b) Diagram
for a thin wire.

above, investigation of a radial wave type delay line should

produce developments in low frequency microwave (0.5 to 1.5

GHz) applications.

The system analyzed in this report is shown in Fig. 1. A

transducer in the form of a fine wire with an elliptical cross

section is excited with an RF current which generates radial

volume waves within the structure. The dc magnetic field is

directed along the z axis, and also the fine wire with art elliptical

cross section is situated parallel to the z axis. This radial wave

propagates perpendicular to the magnetic biasing fields, guided

by parallel surfaces of a ferrite disk, and its energy is distributed

within the medium. As Ganguly et al. pointed out previously, the

frequency characteristics of the radiation resistance is influenced

considerably by changing the microstrip width. The main subject

of this paper is to demonstrate how a change of eccentricity of an

elliptical metal cylinder influences the characteristics of the radia-

tion resistance. The radiation pattern of this elliptic cylinder

(Ribbon type) excitation possesses some type of directivity. If the

eccentricity of the elf.ipse decreases, the patterns of the radiative

power are highly directional, and this directed energy power

tends to be confined to the direction of the y-axis shown in Fig.

l(b). It is possible to gain the maximum output power by placing

the second thin wire within an area of maximum radiative power.

II. BASIC THEORY

When the fields are independent of z ( d/r?z = O), for the

component e, of the electric field vector, Maxwell’s equation

leads to the two-dimensional wave equation

82e, + r?2e:
— + u26popLe= = O

8X2 ay2
(1)

where p ~ = p – ~ 2/p, p and ICare a diagonal and a nondiagona.1

component of permeability tensor P, and p. and c are the vacuum

permeability and dielectric constant, respectively. Applying the

transformation defined by x = h cosh ( &)cos( r ), y = h sinh

($) sin(T), the wave equation leads to the equation

6’2e
--.2 + ‘2’=
8(2

—+2k2(cosh(2&)–cos (2~))e==0
~T2

(2)

where 2k=k1h, kf = U<zpop, h=xo(l– tanh2($o))’/2, and

(Xo+ yo)
&=o.51n(xo_yo) , (refer to Fig. 1 on x, rmdy,).

The boundary condition is that, at the surface of a metal cylinder

e,=O, .$=~o. (3)

Here, for physically acceptable reasons, we assume that the fields

having periods n, and the lowest modem= O is possible to excite,

so that (6) has a nonzero value. Defining q = (k, h ) 2/4, the
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